Chem. Ber. 102, 3731 - 3734 (1969)

Herbert Schumann und Albrecht Roth

Organometallarsine, VII¹⁾

Über die Reaktion von Organozinnarsinen mit Phenylazid

Aus dem Institut für Anorganische Chemie der Universität Würzburg (Eingegangen am 30. Mai 1969)

Organozinnarsine reagieren mit Phenylazid unter Bildung von (Organostannyl-phenyl-amino)arsin-phenylimiden. Der Bildungsmechanismus und die IR-Spektren der neuen Verbindungen werden diskutiert.

Triphenylstannyl-diphenylphosphin und Bis(triphenylstannyl)-phenylphosphin bilden mit Phenylazid unter Eliminierung von molekularem Stickstoff organozinnsubstituierte Aminophosphinimine²⁾. Ein analoges Verhalten gegenüber Phenylazid zeigen auch Organozinnarsine.

Triphenylstannyl-diphenylarsin (1) reagiert mit Phenylazid in benzolischer Lösung und Schutzgas-Atmosphäre bei 65° augenblicklich unter Abspaltung von molekularem Stickstoff. Die Aufarbeitung des Reaktionsgemisches führt zur Isolierung hellgelber, aus Methylcyclohexan umkristallisierbarer Nadeln, die reines (Triphenylstannyl-phenyl-amino)-diphenylarsin-phenylimid (2) darstellen. Diese Verbindung, die selbst in inerter Atmosphäre nur begrenzt haltbar ist, wird von Sauerstoff bzw. Wasser momentan oxydativ bzw. hydrolytisch zersetzt. Sie schmilzt bei 160—162°, ist in aromatischen Kohlenwasserstoffen gut löslich und liegt in benzolischer Lösung monomer vor.

Analog setzt sich Bis(triphenylstannyl)-phenylarsin (3) mit Phenylazid in Benzol, allerdings erst oberhalb von 75°, unter Stickstoffabgabe zu Bis(triphenylstannylphenyl-amino)-phenylarsin-phenylimid (4) um. 4 ist ein gelbes, ebenfalls äußerst luft- und feuchtigkeitsempfindliches Pulver vom Schmp. 152° (Zers.).

$$\begin{array}{c} \text{NPh} \\ \text{Ph}_3\text{Sn-AsPh}_2 + 2 \text{ PhN}_3 \longrightarrow & \text{Ph}_3\text{Sn-N-AsPh}_2 + 2 \text{ N}_2 \\ \text{Ph} \\ & 1 \\ & 2 \\ \end{array} \tag{1}$$

$$(Ph_3Sn)_3As$$
 5 $Ph = C_6H_5$

¹⁾ VI. Mitteil.: H. Schumann und A. Roth, Chem. Ber. 102, 3725 (1969), vorstehend.

²⁾ H. Schumann und A. Roth, J. organomet. Chem. 11, 125 (1968).

Tris(triphenylstannyl)-arsin (5) wird bis zur Temperatur der unkontrollierten Zersetzung des Phenylazids nicht von diesem angegriffen.

Diese markante Reaktivitätsabnahme der Organozinnarsine in der Reihe 1>3>5 gegenüber Phenylazid steht im Einklang mit dem Verhalten entsprechender Organozinnphosphine²⁾ gegenüber diesem Reagenz und spricht für einen gleichartigen Mechanismus.

Der erste Reaktionsschritt wird in einer Anlagerung eines Phenylimin-Restes an das "freie" Elektronenpaar des Arsens bestehen. Unter der berechtigten Annahme, daß dieses "freie" Elektronenpaar an den kovalenten Arsen-Zinn-Bindungen der Organozinnarsine im Sinne von $(p\rightarrow d)\pi$ -Doppelbindungsanteilen beteiligt ist, wird es aber für einen elektrophilen Angriff des Phenylimin-Restes in Richtung $1\rightarrow 3\rightarrow 5$ in immer geringer werdendem Maße zur Verfügung stehen, womit die Abstufung in der Reaktionsbereitschaft gut erklärt ist. Im Falle von 1 und 3 wird im zweiten Reaktionsschritt unter Aufbrechen der durch die Anlagerung des Phenylimin-Restes destabilisierten Arsen-Zinn-Bindung eine Umlagerung des primär gebildeten Arsinimids in ein Aminoarsin eintreten, wodurch das Arsenatom erneut den Charakter eines elektrophilen Zentrums zurückerhält. Der damit mögliche Angriff einer zweiten Phenylimin-Gruppe führt im Falle von 1 direkt zur stabilen Endstufe eines organozinn-substituierten Amino-arsinimids, während bei 3 noch eine zweite Umlagerungsstufe dazwischengeschoben ist.

Infrarot-Spektren

2 und 4 wurden im Bereich von 4000 bis 270/cm IR-spektroskopisch untersucht³⁾. Eine Zuordnung der Schwingungsbanden von derart kompliziert gebauten Molekülen ist nur dann möglich, wenn die Gesamtmoleküle in einzelne Bausteine zerlegt und, grob angenähert, als voneinander unabhängig schwingende Einheiten betrachtet werden, Als wesentlichen Bestandteil enthalten beide Moleküle die Arsinimid-Einheit R-N=AsX₂Y, welche bei Betrachtung als Sechsmassen-Molekül der Punktgruppe C_s folgende Schwingungen erwarten läßt: vAs=N, $vN-C_6H_5$, $\delta As=NC_6H_5$, vAsN (2) bzw. vAsC (4), v_sAsC_2 (2) bzw. v_sAsN_2 (4), δ_sAsNC_2 (2) bzw. δ_sAsN_2C (4), $v_{as}AsC_2$ (2) bzw. $v_{as}AsN_2$ (4), δ_sAsC_2 (2) bzw. δ_sAsN_2 (4), $\delta_{as}AsNC_2$ (2) bzw. δ_{as} AsCN₂ (4), ρ AsC₂N (2) bzw. ρ AsN₂C (4) und τ As=N. Dabei ist jedoch zu beachten, daß infolge der Unsymmetrie der Moleküle sowie infolge von Kopplungen einige Banden aufgespalten werden. Für den weiteren Baustein C₆H₅-N-Sn (C₆H₅)₃ sind die Banden vC_6H_5-N und vSn-N zu erwarten. Darüber hinaus treten in den Spektren die substituentenabhängigen und -unabhängigen Phenylschwingungen der $(C_6H_5)_3S_{n-1}$, $(C_6H_5)_2A_{s-1}$, $C_6H_5A_{s-1}$ und $C_6H_5N_5$ Gruppen auf. Die aufgrund dieser Überlegungen getroffenen Bandenzuordnungen zeigt die Tabelle.

³⁾ Perkin-Elmer 221 in Nujol-Suspension kapillar.

Zuordnung der Infrarot-Frequenzen (in cm⁻¹) von 2 und 4 (st = stark, m = mittel, s = schwach, Sch = Schulter)

Zuordnung	2	4
νСН	3030 Sch	3040 Sch
νСН	2900 st	2920 st
νСН	2850 Sch	2855 Sch
KombSchw.	1945 s	1955 s
KombSchw.	1875 s	1890 s
KombSchw.	1810 s	1825 s
νCC	1590 Sch	1600 st
νCC	1575 st	1585 Sch
νCC	1480 Sch	1495 st
νCC	1470 Sch	1470 st
νCC	1455 st	
νCC	1420 st	1430 st
νCC	1370 st	1380 m
νCC	1360 Sch	1360 Sch
νCC	1330 Sch	1340 Sch
βСН	1302 s	1300 s
βСН	1240 s	1282 st
βCH	1217 st	1218 st
βСН	1170 s	1175 s
βСН	1152 s	1153 s
βСН	1070 st	1072 st
βСН	1028 Sch	1029 Sch
βСН	1020 m	1020 m
Ph(Ring)	994 m	995 m
γCH	900 m	900 s
γCH		870 s
vAs=N	849 st	842 st
$\nu A_S = N$	808 st	810 st
γСН	775 s	750 Sch
γCH	730 Sch	
· үСН	722 st	725 st
γСН	692 st	692 st
γСН	657 Sch	658 Sch
Рh	612 s	611 s
νSnN	596 st	598 m
vAsN ₂ C bzw. vAsC ₂ N	502 st	504 st
Ph	472 m	
Ph	463 Sch	457 Sch
Ph	442 st	4 46 st
νAsN ₂ C bzw. νAsC ₂ N	388 st	385 m
Ph ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	314 st	312 m
Ph	305 Sch	301 m
Ph	269 st	270 st

Neben den Phenylschwingungen^{4,5)} konnten nur noch die Banden für ν As=N, ν _{as} und ν _s AsN₂C bzw. AsC₂N sowie ν SnN aufgefunden werden. Alle anderen dar-

⁴⁾ E. W. Schmid, J. Brandmüller und G. Nonnenmacher, Ber. Bunsenges. physik. Chem. 64, 726 (1966).

⁵⁾ D. H. Whiffen, J. chem. Soc. [London] 1960, 1350.

über hinaus zu erwartenden Banden liegen im längerwelligen, von unserem Meßgerät nicht mehr erfaßten Bereich $^{4)}$. Die Bande $_{2}$ As=N erscheint in den Spektren beider Verbindungen um 800/cm als starke Doppelbande. Bei 500 und 380/cm treten jeweils zwei starke bis mittelstarke Banden auf, die wohl durch die Schwingungen der $AsC_{2}N-\text{bzw}$. $AsN_{2}C$ -Pyramide verursacht werden. Eine differenzierte Zuordnung erscheint bei dem geringen zur Zeit vorliegenden Spektrenmaterial zu unsicher. Hinzu kommt, daß an entsprechenden methylsubstituierten Organosilyl-amino-arsinimiden Valenztautomerie beobachtet wurde $^{6)}$, so daß vermutlich auch in den hier betrachteten Molekülen keine isolierten AsN-Einfach- und AsN-Doppelbindungen vorliegen werden, eine Annahme, die eine exakte Zuordnung weiter erschwert. Die sehr problematische Zuordnung der $_{2}N-N$ stützt sich auf Vergleiche mit den Spektren analoger Phosphorderivate $_{2}N-N$ und verschiedener anderer Organozinn-amine $_{2}N-N$

Unser Dank gilt Herrn Prof. Dr. M. Schmidt für die Förderung dieser Arbeit, den Farbwerken Hoechst AG, Werk Gendorf, für eine Spende von Triphenylzinnchlorid sowie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit.

Beschreibung der Versuche

(Triphenylstannyl-phenyl-amino)-diphenylarsin-phenylimid (2): Eine Lösung von 8.1 g (14 mMol) Triphenylstannyl-diphenylarsin (1) und 3.3 g (28 mMol) Phenylazid in 40 ccm wasserfreiem Benzol wird unter Sauerstoffausschluß langsam erhitzt, wobei ab 65° Badtemperatur Stickstoffentwicklung zu beobachten ist. Nach eintägigem Rühren bei 75° wird das Lösungsmittel i. Wasserstrahlvak. entfernt und das verbleibende gelbe Öl mit Pentan versetzt. Die dabei anfallenden gelben Kristalle werden aus Methylcyclohexan mehrmals umkristallisiert. Ausb. 4.7 g (44%), Schmp. 160–162°.

```
C<sub>42</sub>H<sub>35</sub>AsN<sub>2</sub>Sn (761.4) Ber. C 66.26 H 4.63 As 9.84 N 3.68 Sn 15.59
Gef. C 65.88 H 4.96 As 10.05 N 3.56 Sn 15.23
Mol.-Gew. 716 (kryoskop. in Benzol)
```

Bis(triphenylstannyl-phenyl-amino)-phenylarsin-phenylimid (4): 5.7 g (6.7 mMol) Bis(triphenylstannyl)-phenylarsin (3) werden mit 2.4 g (20 mMol) Phenylazid in 40 ccm wasserfreiem Benzol umgesetzt. Bei 75° Badtemperatur ist die erste Stickstoffentwicklung zu erkennen. Die Versuchsführung und Aufarbeitung erfolgt wie bei 2. Ausb. 1.9 g (25%), Schmp. 152–155° (Zers.).

```
C<sub>60</sub>H<sub>50</sub>AsN<sub>3</sub>Sn<sub>2</sub> (1125.4) Ber. C 64.04 H 4.48 As 6.66 N 3.73 Sn 21.09
Gef. C 63.85 H 5.02 As 7.01 N 3.73 Sn 20.08
Mol.-Gew. 1031 (kryoskop. in Benzol)
```

⁶⁾ O. J. Scherer und W. Janssen, J. organomet. Chcm. 16, 69 (1969).

⁷⁾ H. Schumann und S. Ronecker, J. organomet. Chem., im Druck.